5 resultados para process optimization

em Instituto Politécnico de Bragança


Relevância:

40.00% 40.00%

Publicador:

Resumo:

According to many scientists third industrial revolution has already began and this primarily means the transition to renewable energy sources. Energy requirements are increasing rapidly due to fast industrialization and the increased number of vehicles on the roads. Massive consumption of fossil fuels leads to environmental pollution, therefore, biofuels are offered as an alternative. For example, the application of biodiesel in diesel engines instead of diesel results in the proven reduction of harmful exhaust emissions. One of the most important technologies, which has been already explored at the commercial level, is the production of a liquid biofuel applicable in compression-ignition engines (or diesel engines), from biomass rich in fats and oils. This biofuel is generically referred as biodiesel, and consists essentially of a mixture of FAME's (fatty acid methyl esters). This current work describes modern approaches of biodiesel production from vegetable oil and subsequent analysis of produced biodiesel main characteristics such as density, acidity, iodine value and FAME content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is scientific evidence demonstrating the benefits of mushrooms ingestion due to their richness in bioactive compounds such as mycosterols, in particular ergosterol [I]. Agaricus bisporus L. is the most consumed mushroom worldwide presenting 90% of ergosterol in its sterol fraction [2]. Thus, it is an interesting matrix to obtain ergosterol, a molecule with a high commercial value. According to literature, ergosterol concentration can vary between 3 to 9 mg per g of dried mushroom. Nowadays, traditional methods such as maceration and Soxhlet extraction are being replaced by emerging methodologies such as ultrasound (UAE) and microwave assisted extraction (MAE) in order to decrease the used solvent amount, extraction time and, of course, increasing the extraction yield [2]. In the present work, A. bisporus was extracted varying several parameters relevant to UAE and MAE: UAE: solvent type (hexane and ethanol), ultrasound amplitude (50 - 100 %) and sonication time (5 min-15 min); MAE: solvent was fixed as ethanol, time (0-20 min), temperature (60-210 •c) and solid-liquid ratio (1-20 g!L). Moreover, in order to decrease the process complexity, the pertinence to apply a saponification step was evaluated. Response surface methodology was applied to generate mathematical models which allow maximizing and optimizing the response variables that influence the extraction of ergosterol. Concerning the UAE, ethanol proved to be the best solvent to achieve higher levels of ergosterol (671.5 ± 0.5 mg/100 g dw, at 75% amplitude for 15 min), once hexane was only able to extract 152.2 ± 0.2 mg/100 g dw, in the same conditions. Nevertheless, the hexane extract showed higher purity (11%) when compared with the ethanol counterpart ( 4% ). Furthermore, in the case of the ethanolic extract, the saponification step increased its purity to 21%, while for the hexane extract the purity was similar; in fact, hexane presents higher selectivity for the lipophilic compounds comparatively with ethanol. Regarding the MAE technique, the results showed that the optimal conditions (19 ± 3 min, 133 ± 12 •c and 1.6 ± 0.5 g!L) allowed higher ergosterol extraction levels (556 ± 26 mg/100 g dw). The values obtained with MAE are close to the ones obtained with conventional Soxhlet extraction (676 ± 3 mg/100 g dw) and UAE. Overall, UAE and MAE proved to he efficient technologies to maximize ergosterol extraction yields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ergosterol, a molecule with high commercial value, is the most abundant mycosterol in Agaricus bisporus L. To replace common conventional extraction techniques (e.g. Soxhlet), the present study reports the optimal ultrasound-assisted extraction conditions for ergosterol. After preliminary tests, the results showed that solvents, time and ultrasound power altered the extraction efficiency. Using response surface methodology, models were developed to investigate the favourable experimental conditions that maximize the extraction efficiency. All statistical criteria demonstrated the validity of the proposed models. Overall, ultrasound-assisted extraction with ethanol at 375 W during 15 min proved to be as efficient as the Soxhlet extraction, yielding 671.5 ± 0.5mg ergosterol/100 g dw. However, with n-hexane extracts with higher purity (mg ergosterol/g extract) were obtained. Finally, it was proposed for the removal of the saponification step, which simplifies the extraction process and makes it more feasible for its industrial transference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of natural extracts requires suitable processing conditions to maximize the preservation of the bioactive ingredients. Herein, a microwave-assisted extraction (MAE) process was optimized, by means of response surface methodology (RSM), to maximize the recovery of phenolic acids and flavonoids and obtain antioxidant ingredients from tomato. A 5-level full factorial Box-Behnken design was successfully implemented for MAE optimization, in which the processing time (t), temperature (T), ethanol concentration (Et) and solid/liquid ratio (S/L) were relevant independent variables. The proposed model was validated based on the high values of the adjusted coefficient of determination and on the non-significant differences between experimental and predicted values. The global optimum processing conditions (t=20 min; T=180 ºC; Et=0 %; and S/L=45 g/L) provided tomato extracts with high potential as nutraceuticals or as active ingredients in the design of functional foods. Additionally, the round tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.